A common use of Fourier transforms is to find the frequency components of a signal. Consider data sampled at 1000 Hz. Form a signal containing a 50 Hz sinusoid of amplitude 0.7 and 120 Hz sinusoid of amplitude 1 and corrupt it with some zero-mean random noise:
Fs = 1000; % Sampling frequency
T = 1/Fs; % Sample time
L = 1000; % Length of signal
t = (0:L-1)*T; % Time vector
% Sum of a 50 Hz sinusoid and a 120 Hz sinusoid
x = 0.7*sin(2*pi*50*t) + sin(2*pi*120*t);
y = x + 2*randn(size(t)); % Sinusoids plus noise
plot(Fs*t(1:50),y(1:50))
title('Signal Corrupted with Zero-Mean Random Noise')
xlabel('time (milliseconds)')
NFFT = 2^nextpow2(L); % Next power of 2 from length of y
Y = fft(y,NFFT)/L;
f = Fs/2*linspace(0,1,NFFT/2);
% Plot single-sided amplitude spectrum.
plot(f,2*abs(Y(1:NFFT/2)))
title('Single-Sided Amplitude Spectrum of y(t)')
xlabel('Frequency (Hz)')
ylabel('|Y(f)|')
Fast Fourier Transform (FFT) in matlab
-
by farsun 8:42 PM
-
Tags:
About The Author
Ut dignissim aliquet nibh tristique hendrerit. Donec ullamcorper nulla quis metus vulputate id placerat augue eleifend. Aenean venenatis consectetur orci, sit amet ultricies magna sagittis vel. Nulla non diam nisi, ut ultrices massa. Pellentesque sed nisl metus. Praesent a mi vel ante molestie venenatis.
Related Posts
Connect With Us
Recommend us on Google!
first code that actually works
ReplyDeletefor i also
ReplyDeleteplot(f,2*abs(Y(1:NFFT/2))) why we multiply by 2 here
ReplyDeletehttp://www.mathworks.de/de/help/matlab/ref/fft.html
ReplyDelete